Lifted Probabilistic Inference for Asymmetric Graphical Models
نویسندگان
چکیده
Lifted probabilistic inference algorithms have been successfully applied to a large number of symmetric graphical models. Unfortunately, the majority of realworld graphical models is asymmetric. This is even the case for relational representations when evidence is given. Therefore, more recent work in the community moved to making the models symmetric and then applying existing lifted inference algorithms. However, this approach has two shortcomings. First, all existing over-symmetric approximations require a relational representation such as Markov logic networks. Second, the induced symmetries often change the distribution significantly, making the computed probabilities highly biased. We present a framework for probabilistic sampling-based inference that only uses the induced approximate symmetries to propose steps in a MetropolisHastings style Markov chain. The framework, therefore, leads to improved probability estimates while remaining unbiased. Experiments demonstrate that the approach outperforms existing MCMC algorithms.
منابع مشابه
Constraint Processing in Lifted Probabilistic Inference
First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitati...
متن کاملExact Inference for Relational Graphical Models with Interpreted Functions: Lifted Probabilistic Inference Modulo Theories
Probabilistic Inference Modulo Theories (PIMT) is a recent framework that expands exact inference on graphical models to use richer languages that include arithmetic, equalities, and inequalities on both integers and real numbers. In this paper, we expand PIMT to a lifted version that also processes random functions and relations. This enhancement is achieved by adapting Inversion, a method fro...
متن کاملAggregation and Constraint Processing in Lifted Probabilistic Infrence
Representations that mix graphical models and first-order logic—called either firstorder or relational probabilistic models—were proposed nearly twenty years ago and many more have since emerged. In these models, random variables are parameterized by logical variables. One way to perform inference in first-order models is to propositionalize the model, that is, to explicitly consider every elem...
متن کاملLifted Inference and Learning in Statistical Relational Models
Statistical relationalmodels combine aspects of first-order logic andprobabilistic graphical models, enabling them to model complex logical and probabilistic interactions between large numbers of objects. This level of expressivity comes at the cost of increased complexity of inference, motivating a new line of research in lifted probabilistic inference. By exploiting symmetries of the relation...
متن کاملStochastic Planning and Lifted Inference
Lifted probabilistic inference (Poole, 2003) and symbolic dynamic programming for lifted stochastic planning (Boutilier et al, 2001) were introduced around the same time as algorithmic efforts to use abstraction in stochastic systems. Over the years, these ideas evolved into two distinct lines of research, each supported by a rich literature. Lifted probabilistic inference focused on efficient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015